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ABSTRACT 

This document contains an analytical derivation 

and an empirical validation of a pseudcstate theory for 
the approximation of three- body trajectories. Applica- 
tion of the theory yields "overlapped conic" trajectories 

characterized by e r r o r  magnitudes only about 20 per- 

cent as great (for typical lunar missions) as patched 

conic trajectory errors .  Execution time and adaptabil- 
ity to split boundary value problems a r e  generally com- 

parable, and in some cases the overlappedconic tech- 

nique is superior to the patched conic method in both 

respects. Only minor changes in  coding should be re- 

quired to incorporate the overlapped conic simulation 

into existing patched conic computer programs. The 
overlapped conic simulation is currently being incor- 

porated into the TRW Analytic Return- to- Earth Pro- 

gram- Moon ReferenceunderMSCI'IRWTask A-60. I. 
This document is submitted in partial fulfillment of 
the obligations of MSC/TRVr" Task A-60. I for the Mis- 

sion Trajectory Control Pr<?gramt contract NAS9-8 166. 
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.NOMENCLATURE 

Symbol 

cN 

L De f ini tinn 

c functionai operator implying propagation of a given state 
vector along a conic trajectory to the point of entrance 
into a sphere of given radius 

Ct functional operator implying the propagation of a given 
state vector along a conic trajectory to  a given time 
(i. e.,  solution of Kepler's problem) 

t i  c 

c 

=X . functional opzrator implying propagation of a given state 
vector along a conic trajectory to the point of exit from 
a sphere of given radius 

functional operator implying the conversion of a given 
selenocentric. state vector to geocentric coordinates 

G 
. . -  

G' I e z 
E 

functional operator implying the conversion of a given 
geocentric state vector to selenocentric coordinates 

LN functional operator implying linear propagation of a 
given state vector to the point of entrance into a sphere 
of given radius 

P 

functional operator implying linear propagation of a 
given state vector to a given time 

functional operator implying linear propagation of a 
given state vector to the point of exit from a sphere of 
given radius 

MSI 

Nr 

moon's sphere of influence 

functional operator implying the transformation of a 
given selenocentric real  state vector into a geocentric 
prepericynthion pseudo s tate 

functional operator implying the transformation of a 
given geocentric prepericynthion pseudostate into a 
selenocentric real  state vector 

i 

g " 
I 

functional operator implying the transformation of a 
.given postpericynthion pseudostate into a prepericynthion 
pseudo state 

NX 

PTS 

' R  
4 

pseudostate transformation sphere 

geocentric position vector of spacecraft 
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NOMENCLATURE (Continued ) 

I 

+ r 

r 
S 

r '  
8 

. t  

V 
-c 

-c 
V 

'.xN 

xr 

X' r 

P 
IC 
V 

i; 

c 

0 

c 
0 

n 
0 

De f ini tion 

selenocentric position vector of spacecraft 

radius of PTS 

radius of MSI 

time 

geocentric velocity vector of spacecraft 

selenocentric velocity vector of spacecraft 

functional operator implying the transformation of a 
given prepericynthion pseudostate into a postpericynthion 
pseudostate 

functional 'operatcr implying transformation of a given 
selenocentric real  state vector into a geocentric post- 
pericynthion pseudo state 

functional operator implying transformation of a given 
geocentric postpericynthion pseudostate into a seleno- 

. centric real state vector 

. .  

true anomaly 

gravitational parameter 

geocentric velocity vector of moon 

.geocentric position vector of moon 

I 

I 

? 

geocentrG s ta te jec tor  of spacecraft (has %he compo- 
nents t, R,  and V) 

selenocentric state vector of spacecraft (has the compo- 
nents t, F, and 7 )  

standard deviation (square root of variance) 

right ascension of ascending node 

argument of perigee 

X 
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Superscripts 

NOMENC' 9 T U R E  (Continued) 

Definition -- 
C 

*N 

*X postperic ynthion pseudo state 

s,ate vector resulting from two-body ,:onic) propagation 

prepe ric ynthion pseudo s tate 

Subscripts 

e earth 

m moon 

N sphere entrance point 

X sphere exit point 

xi 



1. INTRODUCTION AND SUMMARY 

1. I PROBLEM STATEMENT 

f 

t 

i t 
5; 

Precise determination of a spacecraft trajectory in the earth-moon 

system requires numerical integration of the differential equations of 

motion. Since numerical integration i s  a time- consuming process, two- 

body (conic) segments a re  used extensively to approximate three-body 

motion during preliminary analyses of lunar mission::. 
method of approximation, a "mc m ' s  sphere of influence" (MSI) is defined. 

The MSI is centered on, and moves with, the moon. Outside the MSI, 
lunar gravity i s  completely ignored, and the spacecraft motion i s  described 
by a geocentric conic. 
indirectly as it affects the motion of the moon), and the spacecraft motion 

is described by a selenocentric conic. If a trajectory is propagated into 
the MSI, the geocentric conic state vector a t  the entry point i s  converted 

to selenocentric coordinates. 
nocentric conic that is used to describe all subsequent motion inside the 

MSI. 
the true instantaneous state vector) a r e  continuously perturbed by the 
earth; whereas, the patch-conic elements a re  held f-ixed. 
i s  a cumulative e r ro r  in the patched-conic state vector as it is propagated 

into the MSI. 
only a t  the expense of increasing a similar e r ro r  in the geocentric conic 

state vector. 

mize the combined e r ro r  that results from ignoring lunar perturbations on 
the geocentric conic and earth perturbations on the selenocentric conic. 

The compromise value of .MSI radius usually is somewhere between 9 and 
14 earth radii. 

In the conventional 

Imide the MSI, earth gravity is ignored (except 

The converted state vector defines the sele- 

The elements of the true osculating selenocentric conic (defined by 

Therefore, there 

This e r ro r  can be reduced by making the MSI smaller, but 

Selection of an MSI radius requires a compromise to mini- 

1 . 2  OVERLAPPED CONIC TECHNIQUE 

In the overlapped conic technique, a moon-centered "pseudostate 
transformation sphere" (PTS) i s  dcfined. 
perturbations of the geocentric conic a r e  ignored outside the PTS, whose 

As in the case of the MSI, lunar 

1 - 1  



i 
radius i s  typically about twice as large as  the MSI radius. 
the patched conic method, the geocentric conic is extended into +he 

sphere, rather than being terminated at the PTS surface. 

defining a region of exclusive lunar influence, the PTS defines a region 

wherein geocentric conic states a re  regarded as Eseudostates that a re  

related to their real counterparts by a reversible transformation algo- 

rithm. 
related to a geocentric prepericynthion conic, and real post2ericynthion 

states a re  related to a geocentric postpericynthion conic. 

state is  discontinuous at the real pericynthion passage time, but the real 
(transformed) state is continuous at all times, including the PTS entry 

In contrast to 

Instead of 

As illustrated in Figure I- i ,  real prepericynthion states a re  

The pseudo- 

i and exit times. 

The transformation of a geocentric prepericynthion pseudostate to 

its real selenocentric counterpart is a three-step process requiring 
(I) conversion of the pseudostate from geocentric to selenocentric coordi- 

nates, (2) linear propagation of the converted state backward to the PTS 
surface, and (3) selenocentric conic propagation forward to the original 

pseudostate time. Transformation of a geocentric postpericynthion pseu- 
dostate is similar, except that the direction of propagation is reversed in 

. steps (2) and (3). 

To propagate a real selenocentric state vector to another point on 
the real trajectory, it is rlecessary first to transform it into a geocentric 
pseudostate vector. F o r  a prepericynthion state, the required transfor- 
mation steps a re  (I) selenocentric conic propagation backward to  the PTS 
surface, (2) linear propagation forward to the original state time, and 
(3) conversion of the resulting pseudostate f rom selenocentric t o  geocent 

coordinates. The transformation process is identical for a postpericyn- 
thion case, except the direction of propagation is reversed in steps (I) and 

(2). 
agated along a geocentric conic to the desired time or  position. 

propagated pseudostate lies outside the PTS, it is  taken to be a real geo- 

centric state. Otherwise, it is transformed to a real  selenocentric state 
by the process defined in the preceding paragraph. 

After the appropriate geocentric pseudostate i s  defined, it is prop- 
. If the 

i 
J 

i 

I 

t 

f 
I 
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If a real prepericynthion .-tate vector is to be propagated beyond 

pericynthion to a real postperit rnthion state, the geocentric pseudostate 

must be redefined at or  near the real  pericynthion passage time. Let tJ 
be an estimate of the passage time (it does not have to be very accurate, 

f one hour is close enough). 
the geocentric prepericynthion conic to time tJ. 
pseudostate is (I) converted to selenocentric coordinates, (2) propagated 
linearly backward to the PTS surface, (3) propagated forward along a 
selenocentric conic to the PTS surface (i. e. , f rom the hyperbolic entry 

point to the exit point), (4) propagated Pinearly backward to time t J, and 

(5) converted back to geocentric coordinates. 

lies on the geocentric postpericynthion conic, and the geocentric propa- 
gation of the pseudostate is continued from this point. 

The original pseudostate is  propagated along 

Then the propagated 

The redefined pseudostate 

Trajectory approximations that result from applying the pseudostate 

theory summarized in the preceding four paragraphs are referred to as 

"overlapped conics. This terminology is adopted because geocentric and 

selenocentric conk segments a t e  overlapped within the PTS, in the sense 
that the geocentric and the selenocentric two-body differential equations of 

motion are integrated separately, but over identical time intervals. 

The overlapped conic technique affords a better dynamic simulation 

of three-body motion than the patched conic technique and yields e r rors  
only about 20 percent as great (in the case of lunar missions) as corre- 

pondiug patched conic errors.  
boundary value problems are generally comparable, and in some cases the 

overlapped conic technique is superior to the patched conic method in both 
respects. The overlapped conic simulation can be incorporated into exist- 
ing patched tonic computer programs with only minor changes in coding; 
therefore, rapid implementation of the overlapped conic technique is 
pos 5 i'ol e. 

Execution time and adaptability to split 

.4lthough derived specifically for the simulation of lunar missions, 

the general pseudostate theory (upon which the overlapped conic method is 

based) is  app1icabl.e to any th-c 

has negligible mass  and hyperbolic cncjrc+ I,a.t:ve to the secondary body, 
-body system in which the tertiary body 

1-4 
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provided the mass of the primary body is quite l u g e  relative to the mass 

of the secondary body. 
technique can be applied to interplanetary trajectories. 

determination of the optimum PTS radius would be required for each planet 

involved. 

It is believed, therefore, that the overlapped conic 

An empirical 

The theory described in this document reprssents an extension and 

a generalization of the basic transformation algorithm described in 

Reference i .  The transformation equations presented a r e  derived from 

basic theoretical considerations; whereas, the derivation in Reference i 

was based primarill an intuitive logic. 

1-5  



2. DERIVATION O F  EQUATIONS 

2. I EQUATIOTJS OF EARTH-RELATIVF MOTION 

c If all forces except the central gravitational forces of the earth and 

the moon a r e  ignored, the earth-relative motion of a spacecraft in the 

earth-moon system is governed by the three-body differential equation 

E 

+ 4  

where the inertial position vectors R, r, and a r e  defined in Figure 2- I. 

2. I. I True Earth-Relative Trajectory 

Given an initial geocentric state vector 

f 

the velocity and position components of any other true state vector 

on the same trajectory a r e  defined by the integral equations 

and 

There a re  no known general closed-form solutions for the f i r s t  two terms 

is required to in Equations (4) and (5); therefore, numerical integration 
define the spacecraft trajectory accurately. 

2- 1 
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2. 1. 2 Geocentric Conic Trajectory 

The sum of the last two terms in Equation (I) is very small when the 

spacecraft is very near the earth. 

throughout the time interval of interest, .its motion can be assumed to be 

governed by the two-body differential equation 

If the spacecraft i s  near the earth 

S C  R = - pigC/(RC)3 , 

and the conic state vector 

can be assumed to be a good estimate of the t rue state vector CJ. 

The conic velocity and position vectors and gc (obtained fi-om J J 
closed-form equations) represent the integral solutions . 

and 

of Equation (6). 

2.2 EQUATIONS OF MOON-RELATIVE MOTION 

The moon-relative motion of the spacecraft (again, ignoring all 

forces other than the central gravitational forces of the earth and the 

,noon) is governed by the differential equation 

Equation (10) i s  no more and no less  correct than Equation (1); however, 
it i s  often more convenient to use when the spacecraft is near the moon. 

, 

2-3 
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2. 2. i True Moon-Relative Trajectory 

Given an initial selenocentric state vector * 

(.- GI.= (tI, TI, GI) 8 

the velocity and position components of the true state vector 

are defined by the integral equation 

and 

-c 'J - r J r ( - p m F / r 3 ) d t  - dt +rJ[ (-pes/R3)dt dt 
5 tI t1 

Again, numeiical integration is necessary to define an accurate moon- 
relative trajectory, becpxse there a r e  no known general closed-form solu- 
tions for the first two terms in Equation (13) and in Equation (14). 

2. 2. 2 Selenocentric Conic Trajectory 

When the spacecraft is very near the moon, the s u m  of t3e las t  two 
I 

terms in Equation (10) i s  very small. If the spacecraft stays near the 
moon throughout the time interval of interest, its motion can be assumed 
to be governed by the two-body differential equation 

: ' 3  . 
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’ .  ,. . and the conic state vector 1 .  

. . :) 

, 
can be assumed to be a good estimate of the true state vector 0 J’ 

d .C 
The conic velocity and position vector “J anc! TC J represent the inte- 

gral solutions , , .  

=KJ [-pmFc/(rC) 31. dt‘+ %I 

. .  
and 

of the differential equation (15). 

2.3 OVERLAPPED CONIC APPROXIMATION O F  A TRANSEARTH 
. ,  TRAJECTORY .. 

.. - . .. I 

Given the selenocentric state vector 
. -. - . . .  .~ - 

of a spacecraft initially near the moon, assume it i s  required to calculate 
an estimate of the geocentric state vector 

. .. 

2- 5 

_ -  --- 

on the earth approach trajectory at  a given geocentric distance RK, where 
RK = 1- I << pK. Neither Equation (6) nor Equation (15) is valid over the 

entire trajectory. 
describing the motion of the spacecraft after the selenocentric distance r 
becomes greater than some (as yet, undetermined) distance rs. 
Therefore, i t  will be attempted to derive an accurate approximation 

RK 
However, Equation (6) is reasonably accurate for 



c 

(- 

I 
~ 

b 

* 

q 

c 

of the spacecraft's true geocentric state vector 3 at  the time of exit from 

a selenocentric sphere of radius r This state vector can thex?. be prop&- 

gated along a geocentric conic to the desired geocentric distance R The 

selenocentric sphere defined by rs will be'called (for reasons to be 
explained later) the "pseudo state transformation sphere!' (PTS). 

8. 

K' 

The evaluation of X i x  will be accomplished by approximate integra- 

tion of the three-body differential equation ( i ) .  
will be simplified by ignoring the third te rm in Equation (I). 
term can be integrated quite easily in closed form; therefore, its omission 

is not absolutely necessary for purposes of w-athematical simplification. 

However, its magnitude is quite small relative to the magnitudes of the 

first two terms, and its omission usually does not have a very great effect 

on the accuracy of t h r  solution. For  "reasonable1t lunar mission trajec- 
tories (i. e., those in which the spacecraft approaches the moon from'the 

direction of the earth and departs in the direction of the earth), omission 
of the third te rm tends to compensate €or inaccuracies in the approximate 
integration of the f i rs t  two terms, thereby actually increasing the accuracy 

of the solction. 

The problem of integration 

The third 

2. 3. 1 Incomplete Evaluation of PTS Exit Velocity Vector 

The velocity component of C:x is  given by 

It is assumed that the geocentric position and velocity vectors of the moon 
at  time tI (or any other t ime) 'are available from a lunar ephemeris. 

Therefore, the last  t e rm in Equation (22) can be found merely by.convert- 

ing the initial selenocentric velocity vector to geocentric coordinates, thus 

- + - c  VI = VI t VI 9 

- I  

L 



$ '  

(- 

I ' .  

i. t c5 
1 

An approximate value for the second te rm in Equation (22) can be 

found by considering Equation (17). 
too large), the selenocentric conic position vector FC (defined by conic 

propagation of the initial selenocentric state vector u ) is approximately 

equal to the true position vector F. 

Inside the PTS (if its radius rg is not 

I 
Therefore, 

where ?: is the velocity component of the state vector 

defined by 

The functional operator Cx implies propagation of the initial state vector 
oI along a selenocentric conic to the point of exit from a sphere of radius 

8' 
r 

Substitution of (24) and (23) into (22) yields 

where 

. .  .-c*x 
The evaluation of Vx'- J incomplete because a closed-form expres- 

sion for  the integral (-pex/R3)dt appearing in (27) has not yet been 

derived. Complete evaluation of T y  will be deferred until after a partial 

evaluation of the PTS exit position vector sy has been accomplished. 

2 -7  
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2.3. 2 Incomplete Evaluation of PTS Exit Position Vector 
i 

The position component of X i x  is  given by 

f ' 
5;' (-peg/R3)dt dt +lItxl: (-pm?/r3)dt dt 

t (tx - t )  TI 3- XI . 
The initial geocentric position vector is given by 

$ 
-c 

and the initial geocentric velocity vector VI has already been defined by 

Equation (23). 

t 

An approximation of the second te rm in Equation (29) is  found by 
considering the selenocentric conic equation (18). 
nocentric conic p.osition vector FC is a good approximation of the true 

position vector Finside the PTS, 

Again because the sele- 

c 

ItXf (-pm?/r3)dt dt s (Fg - TI) - (tx - tI) TI . 
tr 

When (31), (30), and (23) a r e  substituted into ( 2 9 ) ,  

where y;x has already been define'd by Equation (28), and where 

4.C Icc C The quantities tXJ rX , and vx a re  components of the state vector ox 
- defined by (26). 
( 

(33) 

2- 8 
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2. 3. 3 The Pseudostate Propagation Hypothesis 

Comparison of the approximate integral equations (which were 
derived ear l ier  and a r e  repeated here for  convenience) describing the 

PTS exit velocity and position ve'ctor 

with the integral equations describing state vector propagation dong a 
geocentric conic trajectory 

i 
-w =ItJ [-pexc/(Rc)']dt dt t (tJ - t1)yI t'zI 

5 RJ 

suggests, as a hypothesis, that the operation 

would yield a good approximation of the true PTS exit state vector Ex. 
In (34), the functional operator C implies propagation of the initial t 
'ps eurlos tat e" vector 

X' along a geocentric conic trajectory to the given time t 

t 

2 - 9  
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If this hypothesis is correct,  then the desired estimate of the t rue 
geocentric state vector C can be obtained by K 

where the functional operator G here impiies propagation of along a N 
geocentric conic to the pcrcnt of entry into a geocentric sphere of radius 

It is not necessary to actually calcAate Z*' to solve the example RK' X 
problem. 
replaced by the single operation 

The sequential operations implied by (34) and (36) can be 

which yields precisely the sam2 final state vector with much less compu- 

tation effort. 

The validity of the pseudostate propagation hypothesis depends on 
how. closely the geocentric pseudostate position vectar x*' (as defined by 
the geocentric conic propagation of C;x) agrees with the t rue position vec- 

tor R between times tI and tX. 
dated by empirical results. 

range of validity can be obtained from a qualitative-, analysis of the differ- 
ence between real and pseudostate positions at the initial state time ti. 
This ca.n best be accomplished by converting the geocentric pseudostate to 

- 
Ultimately, the hypothesis must be vali- 

However, some insight as to the probable 

selenocentric coordinates, yielding 

where 

Equations (39) and (40) resiilt from subtracting the geoceiitric position 
and velocity vectors of the moon from R x  anJ Ti', as defined in 
Equations (33)  and (28), respectjvely, 

-c*X 

2- 10 
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5 
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. B  

Equations (39) and (40) imply that D';" is obtained simply by a linear 
C propagation of Q 

centric conic to the PTS exit point) backward to  the original state time tI. 

This linear propagation can be described by using the functional notation 

(which was obtained by propagating oI along a seleno- X 

which implies the operations described in (39) and (40). 

In selenocentric coordinates, the pseudostate position lies. on a 

straight line that is tangent, at the PTS exit point, to the osculating sele- 

nocentric hyperbola defined by cy 
the pseudostate position is equal to 

The distance from the PTS surface to 

Figure 2- 2 illustrates schematically the pseudostate position for five 
different positions of the real initial state. 

increases, the distance between the real  initial position I and the pseudo- 
state initial position I increases. In particular, the pseudostate izlitial 

positions 1;" and I:x differ considerably from their real  counterparts I4 
and I , which lie on the prepericynthion leg of the osculating hyperbola. 
Because of the significant divergence of the pseudostate position from its 

real  counterpar't on the prepericynthion leg, the propagation of the geocen- 

t r ic  pseudostates C 
to yield an accurate approximation of the true PTS exit state vector Ex. 

It is apparent that as t (x - 5) 
Z:X 

5 

;'X *X or  C along a geocentric conic can not be expepted 
I4 I5 

The pseudostate propagation hypothesis can be extended to cover 

prepericynthion cases. 
of a prepericynthion geocentric pseudostate ETN (as distinguished from the 
postpericynthion geocentric pseudostate Cx'x) bhich has not yet been 

defined. 
dostate propagation hypothesis, as  applied strictly to postpericynthion 

states, before proceeding with the extension of the hypothesis to preperi- 

cynthion cases. 
be deferred temporarily. 

However, the extended hypothesis involves the use 

I 
It will be helpfulto explore some of the implications of the pseu- 

Therefore, the prepericynthion pseudostate definition will 
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Figure 2- 2. Relation Between Real Position and Postpericynthion 
Pseudostate Position (Selenocentric Coordinates) 



2. 3.4 Implications of the Propagation Hypothesis 

If the pseudostate propagation hypothesis described in the previous 

section is valid in general for solutions of the type of problem given a s  an 
example (i. e. , fo r  estir,lation of a geocentric state vector C located out- 

side the PTS, given any real postpericynthion state vector GI i 
PTS), then by implication it i s  valid for the propagation of anj  
pericynthion state vector t o a n y  point (inside o r  outside the P'I 5, c 

same real postpericynthion trajectory. 
if the same estirr,ate of C 

t < tX) on a given real  postpericynthion trajectory, the geocentric conic 
along which the pseudostates a r e  propagated must be unique. 

K 
- 2  the 

c post- 
t'ie 

The reasoning is straighforward: 
is obtained for  any true state vector oI (where K 

I 
Furthermore, 

. .. 

L 

there must be a one-to-one correspondence between the real  state vectors 

and the pseudostates defined by the geocentric conic. 
.. 

Now, i f  real postpericynthion state vectors a r e  related to pseudo- 
states on a unique geocentric pastpericynthion conic by a one-to-one trans- 
formation alg srithm, then it follows that real prepercynthion state vectors 

must be related (by a similar algorithm) to pseudostates on a geocentric 
prepericynthion conic. 
can be deduced from a mathematical derivation similar to that contained 
in Sections 2.3. 1 through 2.3.3, o r  more easily by studying the ge&netrf- 

cal aspects of the postpericynthion transformation and applying the basic 

principles to the prepericynthion case. The geometrical properties of the 
prepericynthion transformation a r e  illustrated in Figure 2- 3, which i s  the 

prepericynthion analogue of Figure 2- 2. 

(. 

The nature of the prepericynthion transformation 

t 

2.4 THE PSEUDOSTATE THEORY 

The following subsections define a pseudostate theory for approxi- 

mating the three-body trajectory of a spacecraft in the earth-moon system. 
i It is zssumed that the energy of the spacecraft is hyperbolic with respect $ 

to the moon. i 

The theory is a formal statement of logical inferences drawn from 

It i based on the assumption that the analysis presented in Section 2. 3. 

the pseudostate propagation hypothesis described in Section 2.3.3 i s  valid. 

, 2-13 
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Figure 2- 3. Relation Between Real Position and Prepericynthion 
Pseudo s tate Po sition (Selenocentric Coordinates) 
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The definition of the theory is made prior to the vzlidation of the under- 

lying assumption, because the ultimate validation res t s  on empirical data 
generated by application of the theory. 

The six transformation functions required for application of the 

pseudostate theory to state vector propagation problems a r e  defined in 
Appendixes C, D, and E. These six functions a r e  described by use of the 

lower- order  function definitions contained in Appendixes A and B. 

The theory is defined specifically as it applies to the motion of a 

However, it  is applicable to the spacecraft in the earth-moon system. 

motion of any tert iary body in any three-body system, provided the tert iary 

body has negligible mass  and !iyperbolic energy relative to the secondary 

body, and provided the mass of the secondary body is quite small relative 
to the mass  of the primary body. - .  
2.4. 1 The Pseudostate Transformation Sphere 

The earth-moon system is divided into two regions separated by the 

surface of a pseudostate transformation sphere (PTS.); 
tereci on and moves with the moon. 

optimum radius of the PTS is expected to be approximately half.the mean 
geocentric distance of the moon; the exact radius is to be determined 
empirically. 

2.4.2 Pseudostate Vectors 

The PTS is cen- 
F rom analytical considerations, the 

For  every real  spacecraft state vector, there exists one o r  two 

pseudostate vectors. Cutside the PTS, there is a one-to-one correspon- 
dence between real  states and pseudostates; specif, 
pseudostate is  identically equal to its real  counterpart. 

~ l y ,  the geocentric . 

Inside the PTS, every real  state is related, ( 1 )  to a unique preperi- 
cynthion pseudostate by a reversible prepericynthion pseudostate transfor- 
mation algorithm, and (2) to a unique postpericynthion psmdostate by a 
r eve r sib1 e po s tpe r ic  ynthion p s eudo stat e transformation algorithm. 

2-15 



2.4.3 Loci of Pseudostate Vectors 
( 

For a given real spacecraft trajectory, there exist two unique geo- 

centric conic trajectories: : 
I) A prepericynthion geocentric conic, which is the locus 

of g eoc ectric pr epericynthion ps eudos tate s 

2) A postpericynthion geocentric conic, which4s the locus 
of geocentric postpericynthion pseudostates 

2.4.4 State Vector Propagation 

If any real state vector is to be propagated over a given interval of 

time to define ancLtler state vector on the real  trajectory, it must first be 

appropriate geocentric conic for the same interval of time. The propa- 

gated real  state vector is obtained by performing a pseudostate- to- real 
trans formation of the propagated pseudo s tat e. 

I transformed into a geocentric pseudostate and then propagated along the 

Real  prepericynthion state vectors are defined by propagating the 

prepericynthion pseudostate along the geocentric prepericynthion conic, 
and real  postpericynthion state vectors a r e  defined by propagating the 

postpericynthion pseudostate along the geocentric postpericynthion conic. 
If i t  is necessary to propagate a pseudostate beyond the real pericynthion 

passage time, the pseudostate must be redefined (i. e., transformed from 
a prepericynthion pseudostate to a postpericynthion pseudostate, o r  vice 
versa) at or near the time of real pericynthion passage. 

2-16 
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3. EMPIRICAL VALIDATION 

! 

.I. 

I 

- .  

To test  the pseudostate propagation hypothesis of Section 2. 3. 3 (and 

the pseudostate theory derived from it), overlapped conic transearth tra- 

jectories were computed for a set  of real selenocentric initial state vec- 

tors. As indicated in Figure 3-1, the total flight time to perigee ranged 
from approximately 27 hours to 167 hours. 

centric posigrade and selenocentric retrograde motion were included in 

the test  set. 

mately 4 earth radii. 

State -.-ectors defining seleno- 

Pericynthion altitudes ranged from near zero to approxi- 

A few (about half a dozen) representative cases were selected initi- 

ally to be used for  an empirical determination of a suitable value for the 

PTS radius. Based on this preliminary investigation, a value of rs = 24 
earth radii was selected, and this value was used in all subsequent over- 

lapped conic trajectory computations. This is not an optimum value for 
all lunar mission simulations (Reference 2), but it appears to give very 

good results for a wide range of transearth’trajectories. 

After fixing the PTS radius a t  24 earth radii, overlapped conic prop- 

agation e r rors  in several geocentric trajectory parameters (judged to be 
most significant in transearth trajectory simulations) were determined for 

each test  case. 
along with e r rors  resulting from competitive methods of three-body t ra-  

jectory approximation. 

to precision values obtained from a highly accurate computer program that 

numerically integrates the perturbing accelerations arising from earth 
oblateness and solar gravitational influence, as well as  the central gravi- 

tational accelerations of the earth and the moon. The numerical integra- 
tions were repeated, with earth oblateness and solar perturbations zeroed 

out, in a limited number of cases. This was done to  obtain estimates (the 

lowermost dashed curves in Figures 3-2 through 3-5) of the effects of 
earth oblateness and solar perturbations on the total propagation error .  

These e r ro r s  a r e  plotted in Figures 3-2 through 3-5, 

Al l  e r ro r s  in these figures a r e  measured relative 

3 - 1  



I 

8 
hl 

0 
2 

0 
9 

0 
T 

. : ..,... . .... . . .. .. .. . . 

-I. 1 
8 9 

I I I 
c cv 

c 7 ap (Y 0 T 0 - c 

(UH) NOIHlNA31U3d 01 3WI1  l H 3 l l J  

3-2 

. 

III 
e, 
III 

6 
k 
ld 
8 m 
9 
k 

i 

0 



$'  

I .. 

i 

6 

9. . 
I 

i (-- 
I 
L 
i 

As indicated in Figures 3 - 2  through 3 - 5 ,  the overlapped conic e r ro r s  

a re  generally only about 20 percent a s  great as  corresponding patched 

conic e r rors .  
documented, for translunar case-s and a,fixed PTS radius, in Reference 3. ) 
This is felt to be extremely significant, because the overlapped conic 
method and the patched conic method a r e  comparable in terms of execution 

time and their adaptability to the solution of split boundary value problems. 

(In some cases, the overlapped conic is superior in both respects. ) The 
necessary computations a re  also very similar, which means that only 

minor coding changes are required to incorporate the overlapped conic 
model into existing patched conic trajectory computer programs. 

e 

(Approximately the same degree of improvement has been 

Relative to  the Jacobi calibration of conventional patched conics, (as 
implemented in the Moon-Centered Return-to-Earth Program of the Apollo 

Real Time Computer Complex (RTCC), and a s  described in.Reference 41, 
the overlapped conic also offers a significant improvement in accuracy. 

As indicated in Figures 3-3 and 3-5, this is  particularly t rue  of flight-time 

and geocentric inclination e r rors .  The Jacobi calibration, at least  as it 
is implemented in the RTCC, creates  a state-vector discontinuity at the 
conic patch point. 

overlapped co; ic simulation, would be highly unsatisfactory in some 

applications. 

This discontinuity, which does not occur in the case of 

In a few tes t  cases, e r r c r s  resulting from use of the hybrid patched 
conic technique (Reference 5) a r e  shown for comparision in Figures 3-2 

through 3-5. 
Technique (HPCT) e r ro r  data points were obtained to justify the estimation 
of 2a e r ro r  limit curves (as was done for the other three-body approxi- 

tion methods), the. HPCT propagation e r rors  a re  generally only about one- 
half to one-third as  great as corresponding overlapped conic e r rors ,  

However, the greater accuracy of the I-IPCT i s  expected to be at least  
partially offset by longer execution time on the average. 
overlapped conic method has a significant advantage over the  HPCT in 
terms of its adaptability to the solution of split boundary value problems, 

Although an insufficient number of Hybrid Patched Conic 

In any event, the 
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Figure 3- 5. Transearth Geocentric Inclination Errors 
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The advantage of the overlapped conic model over the patched conic 
C' 

is not limited to improvements in the accuracy of geocentric trajectory 

parameters. 
critical s eleiiocentric trajectory parameter is the predicted pericynthion 

altitude. 
pericynthion altitude is the pericynthion altitude af the osculating seleno- 

centric conic defined by the initial state vector. 
osculating conic are continuously perturbed ny the earth, an osculating 
conic prediction can be very inaccurate if it is  made several hours before 

pericynthion passage. 

For instance, in the case of prepericynthion initial states, a 

( 
When conventiona.1 conic approximations a r e  used, the predicted 

Since the elernents of the 

Overlapped conic predictions of pericynthion altitude, for a typical 
lunar approach trajectory, are compared in Figure 3-6 with the true value 

and with predictions based on the conventional conic approximation. 

accuracy advantage of the overlapped conic method is obvious. 

The 

. 

f 
i e 
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APPENDIX A 

STATE -s ZCTOR CONVERSION FUNCTIONS 

A- 1 CONVERSION FROM SELENOCENTRIC TO GEOCENTRIC 
COORDINATES 

t Functional notation: c #  = G (IT;) 

Input: O# = (t#’ Ti, 7;) 

Output: c; = (t#, z;, Ti) 

Computations : 

t# = t# 

Comments: 

The symbols # and t represent any subscript: and 
super script. 

A-2 CONVERSION FROM GEOCENTRIC TO SELENOCENTRIC 
COORDINATES 

a) Functional notation: 0; = G-’ ( Z i )  

c )  output: u# ? =  (t #’ ?+, # .‘) # 

A- 1 



d) Computations: 

t# = t# 

,t -.t -9 
V# = V# - V# 

e )  Comments: 

The symbols # and t represent any subscript and 
superscript. 

. .  
, . I  . 

A-2 

I 



APPENDIX B 

STATE VECTOR PROPAGATION FUNCTIONS 

I '  

B-1 LINEAR PROPAGATION T O A  SPECIFIED TIME 

a) Functional, notation: 

b) 'Input: t2; ai = (ti. 3,. Ti) 

c )  output: (T2 = 

d) Cornput LZ t' ions: 

t2 = t2 

r c - m  v2 = vi 

e r2 = F, t (t2 - ti) 7, 

B-2 LINEAR PROPAGATION TO SPHERE ENTRANCE POINT 

a) Functional notation: oN = LN (o,, rs) 

b) Input: rs; a, = (ti. Ti, Ti) 

c )  output: (T N -  - (k, FN, q 
d) Computations: 

tN = ti t At 

rN = r ,  t .At ?, -c r L -  

-c TN = vi 

f 

B-1 

c 



. 

e) Comments: 

Negative radicand in At equation means line does not 
intersect sphere (possible only.when r l  > rs). 

B-3 LINEAR PROPAGATION TO SPHERE EXIT POINT 

I 
a) Functional notation: 

c 

b) Input: rs; ai = (ti, Ti, Ti) 

c )  Output: 'ax = (k, rX, v X 

. .  d) Computations: . . .  . 

tx = ti t At 

- c - c  r x = r i  t A t 7 ,  

e) Comments: 

Negative radicand in At equation means line does not 

intersect sphere (possible only when r l  > rs). 

B-4 CONIC PROPAGATION TO A SPECIFIED TIME 

0.2 = Ct p, ai' t2 0 a) Functional notation: 

b) Input: p; tZ; ol.= (ti, Ti, T1) 

c) output: az = 

c 

B -2 



Computations : 

I 

i t 
f 

B-5 

B-6 

Solve Kepler’s problem to determine two-body state 

vector at time t2, given the central body gravitational 

parameter t . ~  and the state vector a t  time t 1‘ 

Comments : 

No explicit solution. Requires iteration, Numerous 

subroutines available. Selenocentric state symbols 
used for illustration only (function not restricted to 

selenocentric state propa gation). 

CONIC PROPAGATION TO SPHERE ENTRY POINT 

Functional notation: ON = ‘N [p, a i 8  ’.) 
Input: p; rs; ai = (ti. F,, F ~ )  

output: ON = 

Computations : 

Solve explicit two-body equations for b, rN, and?  N 

at distance r using conic elements defined by p and 

“1’ N VN 
solution. 

Comments : 

No solution if conic periapsis distance i e  greater than 
r , g r  if apoapsis distance is less than r Selenocentric 

state symbols used for illustration only (function not 
restricted to selenocentric state propagation). 

I 

s’ 
ImposeF + 0 as a condition to get unique 

S €3’ 

CONIC PROPAGATION TO SPHERE EXIT POINT 

a) Functional no tation: ox = cx (P, ai’ r.) 
\ 

b) Input: p; rs; ai = (ti, Ti, Ti) 

B - 3  
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t 
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c) Output: ax = (tx, -c rX, Vx) i 

d) Computations: 

So've explicit two-body eqrxations for tx, -c rX, and 'f 
X 

using conic elements defined by p and at distance r 

oi. 
solution, 

-c 
6' 

Impose itx vx > 0 as a condition to get unique 

e)  Comments: 

No solution i f  conic periapsis distance is greater than 
r o r  i f  apoapsis distance is less than r Selenocentric 

state symbols used for illustration only (function not 
restricted to selenocentric state propagation). 

Sa 6' 

I 
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APPENDIX C 

REAL-TO- PSEUDOSTATE 
TRANSFORMATION FUNCTIONS 

! 

’ c. 

C- I PREPERICYNTHION LEG 

a) Notation: z*iN = N= tI, rs) 
b) Input: rs; or = (tI,’TI, TI) 

*N -&N 4*N 
c )  Output: C I = (tI, R I , V I 

X*N = C I 

e) Comments: 

Computations shown above apply when r r . 
If rI z rs, then 

I s  

C * F  = G PI) 
C-2 POSTPERICYNTHION LEG 

*X 
a) Notation: c I = Xr p!, rs) 

b) Input: rS; or = 

t 



I . 

! 

c' , 

d)  Computations: 

o*x I = Lt (u;, tI) 

2*: = G (D:~) 

e )  Comments: 

Computations shown above apply when rf C rg, 

If rI 2 rg, then 

C:x = G PI) 

. 
N 

4 i I 

c 
C-2 
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APPELTDIX D 

I 
L 

f 

f '  

[ 
i 

i 

t 
3 .. . 
i 

PSEUDOSTATE- Tr3-REAL 
TRANSFORMATION FUNCTIONS 

D- I FREPERICYNTHION LEG 

1 /C>%N a) Notation: aK = NL r \ ~ ' ~ s  

*N --SN -c>$N b) Input: r C = (t., R K ,  V S a  

c )  Output: OK = (tK, FK, 

d) Computations: 
, .  

e )  Comments: 

Computations shown above apply when r *N < rs. 
K 

x: N If r 2 r then 
S' 

D-2 POSTPERICYNTHION LEG 

i *x 
( ' K l  's) a) Notation: oK = X; 

b) . Input: x 
s' 



r 

dc 

d) Computations: 

e )  Comments: 

S. Computations shown above apply when rxCx < r K 

If r'z 2 r , than 
S 



APPENDIX E 

I 

PSEUDOSTATE- TO- PSEUDOSTATE 
TRANSFORMATION FUNCTIONS 

( -  
E- I PREPERICYNTHION- TO- POSTPERICYNTHION 

*N 
a)  Notation: C *J” = XN( c , rs) 

d) Computations: 

e) Comments: . _. 

When propag.-ting a --a1 prepericy-ithion state 

. vector to a point on the postpericynthior, leg of 
the real trajectory, the pseudostate must be 
transferred from the geocentric preFzricynthion 

conic to the postpericynthion conic at o r  near tikc 

real pcricynthion passage time !within & one hour, 

for typical lunar mission trajectories). 

E-1 



I 

E- 2 POSTPERICYNTHION- TO- PXEPERICYNTHION 

*X a)  Notation: c *N = NX ( 2  J , rs) 

i 

1 

i 

f 

( '  
t .  

1 

c) output: c *N = (tJ, "*JN, q) 
J 

d) Computations: 

e) Cojument s : 

When propagating a real  postpericynthion state 
vector to a point on the prepericynthion leg of 
the r2al trajectory, the pseudostate must be 

transferred from the geocentric postpericynthion 

conic to the prepericynthion conic at or  near the 

real pericynthion passage time (within -k one hour, I 

for typical luna;. mission trajectories). 

r 

I 

E-2 

t 



REFERENCES 

I - 
c 

1. S. W. Wilson, Jr.,  "Overlapped Conic Simulation of Three-Body 
Trajectories," TRW IOC 5524. 10-3, 3 1  March 1969. 

2. P. A. Penzo, "Translunar F i r s t  Guess Logic Utilizing the 
Overlapped Conic Technique, I '  TRW IOC 5520.9- 16, 25 June 1969. 

3. P. A. Penzo, "Use of the Impact Pzrameter and the Overlapped 
Conic to Targeting Translunar Trajectories F rom a Midcourse 
State, I '  TRW IOC 5520.9- l i s  22 April 1969. 

1. T. E. Suttles, !'Calibration of Analytic Lunar Programs, rt 

TRW 3832-6002-RU000, 15 August 1965. 

5. P. R. Escobal, et al, "The Hybrid Patched Conic Technique Applied 
to Translunar and Transearth Trajectory Propagation, I '  

TRW 69-FMT- 728 (1  1176-6037-RO- 00), 10 February 1969. 


